<meta http-equiv="content-type" content="text/html; charset=iso-8859-1"/><meta content="mshtml 6.00.6000.17092" name="generator"/><p>This book is an introduction to financial mathematics.</p> <p>The first part of the book studies a simple one-period model which serves as a building block for later developments. Topics include the characterization of arbitrage-free markets, preferences on asset profiles, an introduction to equilibrium analysis, and monetary measures of risk.</p> <p>In the second part, the idea of dynamic hedging of contingent claims is developed in a multiperiod framework. Such models are typically incomplete: They involve intrinsic risks which cannot be hedged away completely. Topics include martingale measures, pricing formulas for derivatives, American options, superhedging, and hedging strategies with minimal shortfall risk.</p> <p>In addition to many corrections and improvements, this second edition contains several new sections, including a systematic discussion of law-invariant risk measures and of the connections between American options, superhedging, and dynamic risk measures. </p>
</div>
</div>
<!-- Details -->
<div class="accordion--item">
<div class="accordion--header" data-title="details" tabindex="0">
Details
</div>
<div id="details-acc" class="accordion--body">
<ul class="product-infos">
<li><strong>Price: </strong>$155.99</li>
<li><strong>Pages: </strong>470</li>
<li><strong>Publisher: </strong>De Gruyter</li>
<li><strong>Imprint: </strong>De Gruyter</li>
<li><strong>Series: </strong>De Gruyter Studies in Mathematics</li>
<li><strong>Publication Date: </strong>24th November 2004</li>
<li><strong>ISBN: </strong>9783110183467</li>
<li><strong>Format: </strong>Hardcover</li>
<li><strong>BISACs:</strong> <br>MATHEMATICS / General<br>MATHEMATICS / Applied<br>MATHEMATICS / Probability & Statistics / General</li>
</ul>
</div>
</div>
<!-- Reviews -->
<!-- Author bio -->
<div class="accordion--item">
<div class="accordion--header" data-title="author" tabindex="0">
Author Bio
</div>
<div id="author-acc" class="accordion--body">
<div class="author__inner">
<div class="author__bio">
<html> <head><meta http-equiv=content-type content="text/html; charset=iso-8859-1"></head> <body> <p><EM>Hans Föllmer </EM>is Professor for Mathematics at the Humboldt University in Berlin, Germany.</p> <P><EM>Alexander Schied </EM>is Professor at the Institute for Mathematics of the Technical University Berlin, Germany.</P> </body> </html>
</div>
</div>
</div>
</div>
<!-- Table of contents -->
<!-- Resources -->
</div><!-- End mobile view -->
<!-- Desktop view-->
<div class="is-visible-desktop container--small">
<!-- tab navigation -->
<ul class="tabs js-product-tabs" id="detailsTab">
<li>
<a class="tab-link active js-description-tab" href="#desc-tab">Description</a>
</li>
<li>
<a class="tab-link" href="#details-tab">Details</a>
</li>
<li>
<a class="tab-link" href="#author-tab">Author Bio</a>
</li>
</ul>
<!-- tab content -->
<div class="tab-content" id="detailsTabContent">
<div class="tab-pane active" id="desc-tab">
<title/><meta http-equiv="content-type" content="text/html; charset=iso-8859-1"/><meta content="mshtml 6.00.6000.17092" name="generator"/><p>This book is an introduction to financial mathematics.</p> <p>The first part of the book studies a simple one-period model which serves as a building block for later developments. Topics include the characterization of arbitrage-free markets, preferences on asset profiles, an introduction to equilibrium analysis, and monetary measures of risk.</p> <p>In the second part, the idea of dynamic hedging of contingent claims is developed in a multiperiod framework. Such models are typically incomplete: They involve intrinsic risks which cannot be hedged away completely. Topics include martingale measures, pricing formulas for derivatives, American options, superhedging, and hedging strategies with minimal shortfall risk.</p> <p>In addition to many corrections and improvements, this second edition contains several new sections, including a systematic discussion of law-invariant risk measures and of the connections between American options, superhedging, and dynamic risk measures. </p>
</div>
<div class="tab-pane" id="details-tab">
<svg version="1.1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" x="0px" y="0px"
viewBox="0 0 111.577 111.577" style="enable-background:new 0 0 111.577 111.577;" xml:space="preserve">
<g>
<path d="M78.962,99.536l-1.559,6.373c-4.677,1.846-8.413,3.251-11.195,4.217c-2.785,0.969-6.021,1.451-9.708,1.451
c-5.662,0-10.066-1.387-13.207-4.142c-3.141-2.766-4.712-6.271-4.712-10.523c0-1.646,0.114-3.339,0.351-5.064
c0.239-1.727,0.619-3.672,1.139-5.846l5.845-20.688c0.52-1.981,0.962-3.858,1.316-5.633c0.359-1.764,0.532-3.387,0.532-4.848
c0-2.642-0.547-4.49-1.636-5.529c-1.089-1.036-3.167-1.562-6.252-1.562c-1.511,0-3.064,0.242-4.647,0.71
c-1.59,0.47-2.949,0.924-4.09,1.346l1.563-6.378c3.829-1.559,7.489-2.894,10.99-4.002c3.501-1.111,6.809-1.667,9.938-1.667
c5.623,0,9.962,1.359,13.009,4.077c3.047,2.72,4.57,6.246,4.57,10.591c0,0.899-0.1,2.483-0.315,4.747
c-0.21,2.269-0.601,4.348-1.171,6.239l-5.82,20.605c-0.477,1.655-0.906,3.547-1.279,5.676c-0.385,2.115-0.569,3.731-0.569,4.815
c0,2.736,0.61,4.604,1.833,5.597c1.232,0.993,3.354,1.487,6.368,1.487c1.415,0,3.025-0.251,4.814-0.744
C76.854,100.348,78.155,99.915,78.962,99.536z M80.438,13.03c0,3.59-1.353,6.656-4.072,9.177c-2.712,2.53-5.98,3.796-9.803,3.796
c-3.835,0-7.111-1.266-9.854-3.796c-2.738-2.522-4.11-5.587-4.11-9.177c0-3.583,1.372-6.654,4.11-9.207
C59.447,1.274,62.729,0,66.563,0c3.822,0,7.091,1.277,9.803,3.823C79.087,6.376,80.438,9.448,80.438,13.03z"/>
</g>
</svg>
<ul class="product-infos">
<li><strong>Price: </strong>$155.99</li>
<li><strong>Pages: </strong>470</li>
<li><strong>Publisher: </strong>De Gruyter</li>
<li><strong>Imprint: </strong>De Gruyter</li>
<li><strong>Series: </strong>De Gruyter Studies in Mathematics</li>
<li><strong>Publication Date: </strong>24th November 2004</li>
<li><strong>ISBN: </strong>9783110183467</li>
<li><strong>Format: </strong>Hardcover</li>
<li><strong>BISACs:</strong> <br>MATHEMATICS / General<br>MATHEMATICS / Applied<br>MATHEMATICS / Probability & Statistics / General</li>
</ul>
</div>
<div class="tab-pane" id="author-tab">
<div class="author__inner">
<div class="author__bio">
<html> <head><meta http-equiv=content-type content="text/html; charset=iso-8859-1"></head> <body> <p><EM>Hans Föllmer </EM>is Professor for Mathematics at the Humboldt University in Berlin, Germany.</p> <P><EM>Alexander Schied </EM>is Professor at the Institute for Mathematics of the Technical University Berlin, Germany.</P> </body> </html>
</div>
</div>
</div>
</div><!-- End desktop view -->
</div>
<!-- Render the video in a separate section-->